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NOTE 

A Fixed-Stencil Non-oscillatory Scheme for Hyperbolic Systems 

1. INTRODUCTION 

Following the ground-breaking work of Harten [ 11, 
several TVD schemes have been successfully formulated and 
widely used by the CFD community [2-51. TVD schemes 
are monotonicity preserving and produce oscillation-free 
solutions for hyperbolic systems. In order to diminish the 
total variation of the solution, TVD schemes automatically 
reduce to first-order spatial differencing at local solution 
extrema. Away from local extrema, TVD schemes can be of 
high-order accuracy. This reduction of accuracy at local 
extrema restricts the global error of TVD schemes to only 
first-order in L, norm. This is an undesirable property of 
TVD schemes, particularly when applied to problems with 
periodic transient waves or vertical flows. To remedy this 
shortcoming, Harten and Osher [6,7] introduced their 
“uniformly high-order accurate essentially non-oscillatory 
schemes” (UN0 or ENO) for hyperbolic systems. These 
schemes are non-oscillatory in the sense that while the total 
variation of the solution is allowed to increase in a bounded 
fashion, the number of solution extrema is not increasing. 
UN0 schemes are still monotonicity preserving and are 
uniformly of high-order accuracy even at local extrema. To 
achieve the non-oscillatory property, a Kth-order UN0 
scheme uses an interpolation polynomial that is the 
“smoothest” one among K different possible choices. Thus, 
the stencil of UN0 schemes is adaptive and can spread over 
2K + 1 grid points for a Kth-order scheme. Comparing with 
the fixed-stencil TVD schemes, UN0 schemes higher than 
second-order are arithmetically more complex and com- 
putationally more expensive. 

It was intended to find a simple way to increase the 
accuracy of TVD schemes at local solution extrema. This 
must be done in a non-oscillatory fashion to prevent Gibbs 
oscillation around discontinuities. The basic scheme used 
here is the five-point fixed-stencil scheme of Chakravarthy 
and Osher [2], which can be third-order accurate (TVD3) 
for linear model problems. To maintain at least second- 
order accuracy at solution extrema, a limiter based on the 
second-order UN0 formulation (UN02) is constructed to 
replace the TVD limiter. The new limiter is used for three 
purposes: (1) to bound the total variation of the solution, 
(2) to distinguish between smooth extrema and discon- 

tinuities, and (3) to restrict the stencil to only live points. 
This results in a fixed-stencil non-oscillatory scheme, which 
can be third-order accurate for linear model problems. 
Hence, it is designated as FN03. 

2. FORMULATIONS 

Consider a system of hyperbolic conservation laws in one 
spatial dimension (x) and time (t): 

41+ f, = 0. (1) 

Here, q andfare m-vectors, with q being the set of conser- 
vative variables, and f the corresponding flux vector. For 
hyperbolic equations, the Jacobian matrix af/aq has a com- 
plete set of linearly independent eigenvectors and real eigen- 
values. Consider the conservation law for a cell j, defined by 
xi- 1/2GxX-xj+1/29 the semi-discrete approximation of 
Eq. (1) can be written as 

where qj now represents the cell-average of q in cell j;fj+ 1,2 
are the numerical fluxes at the bounding surfaces of cell j. 
The MUSCL [S] type schemes use a Riemann solver at 
each cell interface to evaluate the numerical flux based on 
the left and right states of the dependent variables q at 
the cell interface. Assuming that an exact or a “good” 
approximate Riemann solver is used, it is the construction 
of the left and right states that dictates the accuracy and the 
TVD or UN0 properties of the scheme. For every time step, 
the left and right states are constructed to a desired degree 
of accuracy using piecewise polynomial interpolation of 
discrete data related to the cell-average qj. The chosen 
Riemann solver is then employed to evaluate the numerical 
flux at each cell interface. With a suitable time discretiza- 
tion, the overall algorithm should be stable, and TVD or 
UN0 according to the properties of the interpolation poly- 
nomial. Assuming that the cell-average data (qj} are 
available at the cell centroids {x,}, and let Aj+ l,zq = 
qj+l -qj. Following Chakravarthy and Osher [2], the 
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formulae for the left “ -” and right “ + ” states at the cell 
interface can be given by 

(3) 

where A,z~q and Aj+ 112 q are the slope-limited values of 
Aj, ,,2q. The parameter I$ can be chosen between - 1 and 
+ 1 to vary the truncation error of the scheme. Of specific 
interest here is that the scheme is third-order accurate for 
4 = i. The “minmod” operator and the FN03 limiter is 
given as 

minmod { x, Y } 

s~min(l-4, lvl), if sgn(x) = sgn(y) = s, = 
0, otherwise; 

Xlbl? 
w(x)= o 

L 

if x # 0, 
if x=0; 

if 

Djq=Aj+ 1/2q-Aj- l/29 

Dj+ ,pq=minmod{Djq, Dj+ 14) 

S,=minmod{(Aj+1/2q-~Djf,,2q), 

(Aj- l/29 + $Dj- l/2q)) 

I 
A,cT-;;,q=sgn(Aj+ yzq) min{lAj+ 1pql) 8- IAj- 1pql) 

A$q = sgn(Aj- 1pq) min{ IAj- 1pql T 8’ lAj+ 1/2ql> 
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In the above limiter, the variation increase is bounded by 
the UN02 slope Sj. The parameter 4 should be greater than 
or equal to zero to prevent the number of extrema from 
increasing. By taking 4 = $, the scheme is globally third- 
order accurate and is at least second-order in L, norm for 
linear model problems. 

3. TEST RESULTS AND CONCLUSIONS 

Due to the limited space of this paper, only part of the test 
results will be presented. For the sake of comparison, some 
TVD3 and UN02 results will also be shown. The first test 
is the linear scalar wave propagation of continuous and dis- 
continuous functions. The flux function is f = q, and the 
domain is - 1 <x d 1 with periodic boundary conditions. 
The fourth-order Runge-Kutta (RK4) with a CFL number 
of 0.8 was used for time marching. For a smooth initial 
function q(x, 0) = sin(2nx), Figures la and b show the com- 
parison of results at t = 1. The superior accuracy of the 
FN03 scheme over TVD3 and UN02 can be easily seen. 
Figures 2a and b show the L, and L, norm versus the 
number of grid points N (or l/Ax) in the log scale. A second- 
order curve in the symbol A is included for reference use. 
Note that FN03 is third-order and UN02 is second-order 
for both norms. But TVD3 is only second-order in L, norm, 
although formally it is a third-order scheme. TVD3 drops to 
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FIG. 1. Linear scalar wave equation, q(x, 0) =sin(2nx), t = 1, N=40, CFL =0.8: (a) -, exact; 0, TVD3; +, FN03; (b) -, exact; 0, lJNO2, 
+, FN03. 
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FIG. 2. Noms of Fig. 1: 0, TVD3; 0, UN02; +, FN03; A, Znd-order curve. (a) L, norm; (b) L, norm. 

first-order in L, norm. Figures 3a and b are the propaga- 
tion of a discontinuous profile used in [6]. Again, the 
FN03 scheme gives better results than others, especially 
around the extremum points of the profile. 

The second test presented here is the one- 
dimensional Euler equations with q = [p, pu, elT, f = 
CPU, pu* + P, (e + PI uIT, and p = (y - l)(e - $pu’). The 
FN03 interpolation is done on the characteristic variables 
to evaluate the cell interface values. Roe’s approximate 
Riemann solver is used for flux calculation. RK4 is used for 
time integration. The first test is a shock tube problem with 
the initial right state (pR, z.+, pR) = (l., O., 0.714) and left 
state (pr, ur, pL) = (l., O., 4p,). The CFL number is 0.8. 
Figures 4a, b, and c show the density profiles by three 
schemes at t = 0.25. It is seen that UN02 is the most dis- 
sipative scheme across the shock and contact discontinuity. 
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FN03 produces a slight variation increase across the con- 
tact discontinuity. This is not unexpected since the TVD 
requirement was relaxed. The computed density is 1.857 at 
the right side of contact discontinuity while analytically it is 
1.85. This increase is minimal and considered acceptable. 
The second test problem is the interaction of blast waves 
suggested by Woodward and Colella [9]. Figures 5a, b, and 
c show the density plots at t = 0.038 using 200 cells and CFL 
number 0.2. The results obtained by a total variation 
bounded (TVB) method [lo] using 1600 cells is shown for 
comparison. All three schemes capture shocks at around 
x = 0.65 and x = 0.86 within 2 to 3 cells. Because the 200 
cells used is less than adequate, all three schemes show 
similar smearing around contact surfaces at x = 0.6, 
x = 0.78, and x = 0.8. Nevertheless, FN03 is the most 
accurate scheme among them, especially in the vicinity of 
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FIG. 3. Linear scalar wave equation, Ref. [6], t = 0.5, N = 40, CFL = 0.8: (a) -, exact; 0, TVD3; + , FN03; (b) -, exact; 0, UN02; + , FN03. 
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FIG. 4. Shock tube problem, t =0.25, N= 100, CFL = 0.8; (a) - , FIG. 5. Blast waves, Ref. [9], t = 0.038, N= 200, CFL = 0.2: (a) -, 
xact; 0, TVD3; (b) -, exact; 0, UN02; (c) -, exact; f, FN03. exact; 0, TVD3; (b) -, exact; 0, UN02; (c) -, exact; +, FN03. 
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solution extrema between x = 0.6 and x = 0.8. It also gives 
the most accurate result at the slope discontinuity of density 
at around x = 6.8. 

In conclusion, a’ fixed-stencil non-oscillatory upwind 
scheme based on the hybrid of a third-order live-point inter- 
polation and a second-order non-oscillatory limiter has 
been constructed and tested in a series of calculations. The 
extension to a system of equations is verified by a shock 
tube problem and the interaction of blast waves. The 
scheme shows a higher accuracy than the conventional 
TVD3 and UN02 scheme. The trade-off is about 10% 
of CPU time for the one-dimensional Euler solutions 
presented here. This new scheme seems well suited for 
problems with both smooth extrema and sharp discon- 
tinuities present in the solution, for example, in a supersonic 
mixing problem. 
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